A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters
نویسندگان
چکیده
In this paper, we construct and analyze a uniquely solvable, positivity preserving unconditionally energy stable finite-difference scheme for the periodic three-component Macromolecular Microsphere Composite (MMC) hydrogels system, ternary Cahn-Hilliard system with Flory-Huggins-deGennes free potential. The proposed is based on convex-concave decomposition of given functional two variables, centered difference method adopted in space. We provide theoretical justification that numerical has pair unique solutions, such always preserved all singular terms, i.e., not only phase variables are between 0 1, but also sum at point-wise level. addition, use local Newton approximation multigrid to solve nonlinear scheme, various results presented, including convergence test, positivity-preserving property dissipation mass conservation properties.
منابع مشابه
An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System
We present an unconditionally energy stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation modeling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model and describes two phase very viscous flows in porous media. The scheme is...
متن کاملA second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system
We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely sol...
متن کاملDecoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system
We study two novel decoupled energy-law preserving numerical schemes for solving the CahnHilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. In the first scheme, the velocity in the Cahn-Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn-Hilliard equation. In the second scheme, an intermediate vel...
متن کاملA semidiscrete scheme for a one-dimensional Cahn-Hilliard equation
We analyze a semidiscrete scheme for the Cahn-Hilliard equation in one space dimension, when the interface length parameter is equal to zero. We prove convergence of the scheme for a suitable class of initial data, and we identify the limit equation. We also characterize the long-time behavior of the limit solutions. keywords: Nonconvex functionals, forward-backward parabolic equations, finite ...
متن کاملGlobal existence and uniqueness for a singular/degenerate Cahn–Hilliard system with viscosity
Existence and uniqueness are investigated for a nonlinear diffusion problem of phasefield type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. This system aims to model two-species phase segregation on an atomic lattice [19]; in the balance equations of microforces and microenergy, the two u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110451